投稿用户
更新时间:2025-11-09
281
大家好,关于陀螺经纬仪很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于vivo手机陀螺仪校准的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!

陀螺经纬仪(vivo手机陀螺仪校准)
文章介绍了当前地铁工程测量的现状和一些工程测量新技术、新方法。并从地下铁道工程测量精度设计的原则和要求、定向测量GPS控制网测量、铺轨基标测量等方面,论证了提高地铁施工精度和施工质量的新途径。
工程测量是各项建筑工程设计、施工及设备安装的必要工序。随着我国地铁、轨道交通 事业的发展,工程测量也获得了长足的进步,城市地铁由于其在建筑物、构筑物稠密地区修建,精度要求较高,施工线路长、施工单位多,又给工程测量增加了工作难度,因此,新的测量仪器及新的测量方法均在地铁施工中得到了应用。本文就当前地铁工程测量的现状和主要技术方法,由生产实践实际要求出发,作一些介绍和论述。
一、地下铁道工程测量精度设计的原则和要求
地下铁道测量工程的测量精度设计是根据工程的特征、施工方法、施工精度、设备安装精度和贯通距离等诸多因素确定的,它不仅要保证隧道和线路贯通,而且要满足线路定线和放样的精度要求。
地下铁道测量的首要任务是保证隧道贯通,因此在地下铁道工程测量精度设计中,合理地规定隧道贯通误差及其允许值,是地下铁道测量的一项重要研究任务。目前在地下铁道测 量中使用的测量贯通误差要求,大都来自铁道部《新建铁路工程测量规范》,它是根据山岭 隧道贯通误差测量的实际统计资料计算出来的。该指标应用在主要采用盾构和喷锚构筑法进 行隧道施工的地下铁道中,广泛应用于城市地铁,是否科学值得商榷。一般认为地下铁道贯通测量误差应根据设计所给定的限界裕量(安全空隙)和隧道结构联结处的允许偏差两个主要因素来确定,当然还要考虑测量仪器设备的精度状况。如设计一般给定的隧道结构限界裕量每侧为100mm,则这100mm的限界裕量中应主要包括施工误差、测量误差、变形误差等。
地铁给定的高程安全裕量比较大,一般为70—100mm,因此根据目前测量仪器和设备状况以及隧道结构的竖向允许偏差,很容易满足贯通误差设计要求,但考虑到地下铁道整体道床铺轨对高程精度的要求,高程贯通测量误差确定为±25mm.同样采用不等精度分配方法,将高程贯通测量误差分配到高程测量的各个环节:
其中:地面高程控制测量中误差 ±12mm
高程传递测量中误差 ±8mm
地下高程测量中误差 ±12mm
则高程贯通测量中误差mh为:
mh=±18.8mm<±25mm
二、定向测量
在地铁中,采用全站仪、垂准仪和陀螺经纬仪组成的联合作业方法进行竖井定向,该方法摆脱了传统悬吊钢丝的联系三角形法,不仅克服了受城市地铁施工场地狭窄制约,图形强度不易提高,占用井筒时间过长等缺点,而且采用双投点,双定向的方法,大大增加了测量 检核条件,又提高了定向精度。在地铁复八线测量中所使用的GAK—1陀螺经纬仪标称精度为一次定向中误差为±20mm″,实际作业时定向边的陀螺方位角和其改正数的测定误差,则定向边陀螺方位角误差可达到±8″。在实际工作中我们又引进GAOS自动陀螺经纬仪定向系统,不仅操作方便,定向成果可靠,提高了定向精度。
当隧道埋深较浅时,则采用导线测量方法和向地下传统坐标和方向,同样布设双导线加 强检核和提高精度。当隧道贯通距离较长时,还可采用在隧道上钻孔,通过钻孔投测坐标或测定投测点陀螺方位角的方法提高定向精度。
三、地下铁道GPS控制网测量
早在1990年5月北京地铁复八线就采用GPS进行首级控制测量,控制网由10个点组成,布 设成单三角锁形式,该网采用两台WM100单频接收机观测,异环闭合差为1.73ppm—2.89ppm, 边长中误差为±2.1mm,点位中误差为±3.5mm.
1994年由于城市建设的影响,原有GPS控制点有的被破坏,有的发生变形,需要对原控 制网进行扩充,并对原控制点的稳定性进行评价。为此,在原GPS控制网的基础上进行扩充 ,新网共选设了13个点,其中3个点为一等点,7个点为旧点,新增6个点。
考虑到地铁测量误差分配到GPS测量的误差精度要求(相邻点位中误差小于±10mm),为加强控制网整体强度,1994年采用一次布设,两级观测、整体平差的原则设计和布设GPS网 .一级网由两个重叠的大地四边形组成,二级网为一级网下加密的三角锁。
四、断面测量
在地铁隧道中断面形式多样(包括矩形、直墙拱形、椭圆形、传统形、圆形、变截面6种 ),一般要求直线段每12米,曲线段每6米测量一个断面,并根据隧道不同的断面形状,在断 面上选择与行车密切相关的位置测定其与线路中线的距离。过去很多单位采用人工直接丈量 的方法,精度低,速度慢,工作非常繁重。随着测量仪器和测量技术的发展,断面测量仪面 世后,断面测量工作有了新的突破,但该仪器不能实行一站多断面测量,而且价格昂贵,很多单位无经济能力问津。
通过几年来的实践和应用,采用全站仪、数据采集器、计算机和觇牌组成断面测量系统 进行断面测量,利用该系统进行断面测量的方法有二种,一种是将全站仪和觇牌安置在隧道中线点上,首先测量置镜点至欲测断面中线点的水平距离和高程,并将水平角置零,然后就 可连续依次测量多个断面测量点水平角和垂直角信息,并自动传输到数据采集器之中,并通 过计算机经运算既可求出待测点与中线距离。最终以数据表格和断面图形式输出观测成果。另外,为保证测量的断面垂直于中线,在觇牌上安置有简单照准装置和水平度盘装置,不管是直线、圆曲线还是缓和曲线段,都可以根据事先计算好的觇牌至仪器方向与断面夹角值标 定出断面方向。另一种方法是将全站仪或觇牌安置在隧道内任意位置,即测量仪器或觇牌在 非线路中心进行断面测量。该方法利用任意安置仪器或觇牌的点与线路关系,通过计算机确 定断面里程和议程,从而进行断面测量。上述两种断面测量方法速度快,使用方便,而且可 以充分利用本单位现有测量仪器设备,具有非常可观的社会效益和经济效益。
五、铺轨基标测量
铺轨基标是高标准轨道混凝土整体道床的轨道铺设控制点,精确地测设铺轨基标是保证 轨道施工质量的关键。即将颁布实施的《地铁施工验收规范》中地铁轨道验收标准要求:平面上轨道中心线与基标中心线允许偏差为2mm,轨道方向在直线上要远视直顺,用10m弦量允 许偏差1mm,在曲线上远视圆顺,用20m弦量正矢,根据曲线半径圆曲线,允许偏差为1—3mm ,缓和曲线允许偏差为2—5mm,高程上轨顶标高允许偏差2mm左、右股钢轨顶面水平允许偏差为1mm,在延长18m的距离范围内,无大于1mm的三角坑,轨顶高低差目视平顺,用10m弦 量不大于2mm;道岔精度除满足上述要求外,还要满足里程位置允许偏差2mm,导线及附带曲 线允许偏差1mm,附带曲线用10m弦量,连续正矢允许偏差为1mm,轨顶标高允许偏差为2mm,全长范围高低不大于3mm.
从上述地铁轨道验收标准不难看出,由于为节省工程造价,地铁限界预留的安全裕量比 较小,线路在隧道中调整空间受到很大制约,因此,地铁轨道验收标准主要对铺轨基标中线与指导隧道施工的线路中线或结构中线的偏差作出规定。同时,为使线路圆顺,对单位长度 相邻铺轨基标间的相对精度也提出了要求。
根据轨道验收标准,我们总结制定了铺轨基标测设精度要求和基本方法。
1.铺轨基标测设精度要求
为保证线路圆顺和基标相对精度,对控制基标和加密基标的测设精度制定如下要求:
(1)控制基标测设精度要求
两控制基标相邻边长间夹角平差后的值,对设计值而言误差不得超过6″,基标测设的角度测量中误差<±3″;基标高程测量的水准路线闭合差小于8 L mm;距离测量误差直线 段小于1*/5000;曲线段小于1*/1000.
(2)加密基标测设精度要求
直线段纵向误差每6m小于6mm,曲线段每5m小于5mm,偏离中线小于±1mm;相邻基标高差小于±2mm.
(3)道岔基标测设精度要求
道岔铺轨基标位置横向误差不大于±2mm,主线、侧线交角较差不大于±10″,高程误差同加密基标。
2.铺轨基标测设基本方法
由于地铁施工时车站控制点一般从地面直接投测,精度比较高,加之车站线路一般为直线,线路与站台间距限差要求很严,不易在车站进行线路调整。
(1)中线调整测量和精密水准测量
以“铺轨单位”两个车站中的中线控制点为起算控制点,与在区间隧道内的原有施工中线控制点布设通过左、右线的附合导线。如左、右隧道之间有联络线,则应布设结点网。平差后导线点坐标和原来坐标比较,当其较差不影响隧道限界时,即可用这些中线控制点进行下一步控制基标测量工作。如果影响隧道限界时,则应会同设计等有关人员改移或调整中线至允许误差内的合适位置上。
在“铺轨单位”中布设一条通过左右线的精密附合水准网,在区间埋设精密水准控制点(尽量利用施工水准点),水准点间距为100—200m,精密水准网按二等水准测量的技术要求 施测,水准网闭合差小于8 Lmm(L为水准路线长度,以千米计)。
(2)铺轨基标测量
控制基标的测设。利用调整后的中线控制点测设控制基标,控制基标分为初测、串线测量和调线测量三个步骤。
初测:根据事先计算的控制基标测设数据,用坐标法测至地面,并精确测定其位置。
串线测量:对“铺轨单位”中的控制基标进行串线测量,检测控制基标间角度、边长等几何关系是否满足设计精度要求。当控制基标间几何关系超限,并与线路存在较大偏差时应进行调线工作。
调线测量:调线前,先在室内计算控制基标间夹角实测值与理论值较差△β,△β值超 过6″时,可根据△β和控制基标间距计算出控制基标在垂直于线路方向的改正值δ,然后 在现场对△β超过6″时所涉及的控制基标进行归化改正。归化改正时要照顾到相邻基标改 正值的相互影响,往往仅改正一个点就可使相邻点几何关系满足要求。
控制基标的高程则利用上述精密水准点测定,其观测方法和限差同精密水准测量。
控制基标测设往往进行多次,控制基标高程和其之间的角度与边长不能满足限差要求时,则应重新进行调线测量,直至满足要求为止。
加密基标的测设。在曲线段依据控制基标间的方向,按加密基标的间距,在控制基标间埋设加密基标。埋设时经纬仪定向、测距或在控制基标间张拉直线、以钢尺量距等方法确定各加密基标的位置。
在曲线段将仪器安置在控制基标或曲线元素点上用偏角量距等方法设置加密基标,加密基标高程依控制基标高程测量方法测定。
道岔铺轨基标的测设。地铁线路道岔有单开道岔、交分道岔、交叉渡线道岔,对这些道岔的铺轨基标测设应根据道岔铺轨基标图进行。测设时可先对道岔的岔心、交点、主线和侧线进行测设,然后根据铺轨基标与上述各线路中线和交点的关系,利用控制基标直接测设。同样以精密水准测量方法确定其高程。
岔区基标一般测设在线路一侧,但各种类型道岔的控制和加密基标位置各异,而且它的位置随设计图、施工方法与机具而变化。另外道岔岔心定位及道岔结构各元素点相对精度要求高,而且自成一体。因此,在基标测设前首先要研究基标设计图,然后确定测设步骤。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

陀螺经纬仪(vivo手机陀螺仪校准)
一、引言
工程测量学科是一门应用学科,它是直接为国民经济建设服务,紧密与生产实践相结合的学科,随着科技的飞速发展,特别是电子计算机技术、微电子技术、激光技术、空间技术等新技术的发展与应用,以及测绘科技本身的进步,为工程测量技术进步提供新的方法和手段,有力地推动和促进工程测量事业的进步与发展,使工程测量的技术面貌发生了深刻的变化,并取得很大的成就。
二、先进的测量仪器在工程测量中的应用
80年代以来出现许多先进的测量仪器,为工程测量提供了先进的技术工具和手段,如:光电测距仪、精密测距仪、电子经纬仪、全站仪、电子水准仪、数字水准仪、激光准直仪、激光扫平仪等,为工程测量向现代化、自动化、数字化方向发展创造了有利的条件,改变了传统的工程控制网布网、地形测量、道路测量和施工测量等的作业方法。三角网已被三边网、边角网、测距导线网所替代;光电测距三角高程测量代替三、四等水准测量;具有自动跟踪和连续显示功能的测距仪用于施工放样测量;无需棱镜的测距仪解决了难以攀登和无法到达的测量点的测距工作;电子速测仪为细部测量提供了理想的仪器;精密测距仪的应用代替了传统的基线丈量。激光水准仪、全自动数字水准仪、记录式精密补偿水准仪等仪器的出现,实现了在几何水准测量中自动安平、自动读数和记录、自动检核测量数据等功能,使几何水准测量向自动化、数字化方向迈进。激光准直仪和激光扫描仪在高层建筑施工和大面积混凝土施工中是必不可少的仪器。国产JDA系列多功能自动激光准直仪,具有6种自动保持精度的基准,可用于高层和高耸建筑的轴线测控;滑模测偏、测扭、水平测控;构筑物与设备安装放线控测;各类工程测平,结构变形观测等。陀螺经纬仪是用于矿山、隧道等工程测量的另一类主要的地面测量仪器,新一代的陀螺经纬仪是由微机控制,仪器自动、连续地观测陀螺的摇动并能补偿外部的干扰,观测时间短、精度高,如Cromad陀螺经纬仪在7min左右的观测时间能获取3″的精度,比传统陀螺经纬仪精度提高近7倍,作业效率提高近10倍,标志着陀螺经纬仪向自动化方向迈进。
三、数字化绘图技术在工程测量中的应用
大比例尺地形图和工程图的测绘,是城市与工程测量的重要内容和任务。常规的成图方法是一项脑力劳动和体力劳动结合的艰苦的野外工作,同时还有大量的室内数据处理和绘图工作,成图周期长,产品单一,难以适应飞速发展的城市建设和现代化工程建设的需要。
随着电子经纬仪、全站仪的应用和GEOMAP系统的出现,把野外数据采集的先进设备与微机及数控绘图仪三者结合起来,形成一个从野外或室内数据采集、数据处理、图形编辑和绘图的自动测图系统。系统的开发研究主要是面向城市大比例尺基本图、工程地形图、带状地形图、纵横断面图、地籍图、地下管线图等各类图件的自动绘制。系统可直接提供纸图,也可提供软盘,为专业设计自动化,建立专业数据库和基础地理信息系统打下基础。
四、GPS定位技术在工程测量中的应用
80年代以来,随着GPS定位技术的出现和不断发展完善,使测绘定位技术发生了革命性的变革,为工程测量提供了崭新的技术手段和方法。长期以来用测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定3维坐标的、高速度、高效率、高精度的GPS技术所代替,同时定位范围已从陆地和近海扩展到海洋和宇宙空间;定位方法已从静态扩展到动态;定位服务领域已从导航和测绘领域扩展到国民经济建设的广阔领域。在我国GPS定位技术的应用已深入各个领域,国家大地网、城市控制网、工程控制网的建立与改造已普遍地应用GPS技术,在石油勘探、高速公路、通信线路、地下铁路、隧道贯通、建筑变形、大坝监测、山体滑坡、地震的形变监测、海岛或海域测量等也已广泛的使用GPS技术。随着DGPS差分定位技术和RTK实时差分定位系统的发展和美国AS技术的解除,单点定位精度不断提高,GPS技术在导航、运载工具实时监控、石油物探点定位、地质勘查剖面测量、碎部点的测绘与放样等领域将有广泛的应用前景。
五、结束语
综上所述,随着传统测绘技术向数字化测绘技术转化,工程测量科技进步很大,发展很快,取得了显著成绩; 面向21世纪工程测量技术的发展趋势和方向是:测量数据采集和处理的自动化、实时化、数字化;测量数据管理的科学化、标准化、规格化;测量数据传播与应用的网络化、多样化、社会化。GPS技术、RS技术、GIS技术、数字化测绘技术以及先进地面测量仪器等将广泛应用于工程测量中,并发挥其主导作用。
更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
那么建筑测量用什么仪器的呢?以下中达咨询带来关于建筑测量用什么仪器的相关资料,具体内容供以参考。经纬仪测量水平角和竖直角的仪器。由望远镜、水平度盘与垂直度盘和基座等部件组成。按读数设备分为游标经纬仪、光学经纬仪和电子(自动显示)经纬仪。经纬仪广泛用于控制、地形和施工放样等测量。中国经纬仪系列有:DJ07、DJ1、DJ2、DJ6、DJ15、DJ60六个型号(”DJ“表示”大地测量经纬仪“,”07、1、2、……“分别为该类仪器以秒为单位表示的一测回水平方向的中误差)。在经纬仪上附有专用配件时,可组成:激光经纬仪、坡面经纬仪等。此外,还有专用的陀螺经纬仪、矿山经纬仪、摄影经纬仪等。水准仪测量两点间高差的仪器。由望远镜、水准器(或补偿器)和基座等部件组成。按构造分:定镜水准仪、转镜水准仪、微倾水准仪、自动安平水准仪。水准仪广泛用于控制、地形和施工放样等测量工作。中国水准仪的系列标准有:DS05、DS1、DS3、DS10、DS20等型号(”DS“表示”大地测量水准仪“,”05、1、3、……“分别为该类仪器以毫米为单位表示的每公里水准测量高差中数的偶然中误差)。在水准仪上附有专用配件时,可组成激光水准仪。平板仪地面人工测绘大比例尺地形图的主要仪器。由照准仪、平板和支架等部件组成。在照准仪上附加电磁波测距装置,可使作业更为方便迅速。电磁波测距仪应用电磁波运载测距信号测量两点间距离的仪器。测程在5~20公里的称为中程测距仪,测程在5公里之内的为短程测距仪。精度一般为5mm+5ppm,具有小型、轻便、精度高等特点。60年代以来,测距仪发展迅速。近年来,生产的双色精密光电测距仪精度已达0.1mm+0.1ppm.电磁波测距仪已广泛用于控制、地形和施工放样等测量中,成倍的提高了外业工作效率和量距精度。电子速测仪由电子经纬仪、电磁波测距仪、微型计算机、程序模块、存储器和自动记录装置组成,快速进行测距、测角、计算、记录等多功能的电子测量仪器。有整体式和组合式两类。整体式电子速测仪为各功能部件整体组合,可自动显示斜距、角度,自动归算并显示平距、高差及坐标增量,具有较高的自动化程度。组合式电子速测仪,即电子经纬仪,电磁波测距仪,计算机及绘图设备等分离元件,按需要组合,既有较高的自动化特性,又有较大的灵活性。电子速测仪适用于工程测量和大比例尺地形测量。并能为建立数字地面模型提供解析数据,使地面测量趋于自动化,还可对活动目标做跟踪测量,例如对于港口工程中的船舶进出港口的航迹观测。陀螺经纬仪将陀螺仪和经纬仪组合在一起,用以测定真方位角的仪器。在地球上南北纬度75°范围内均可使用。陀螺高速旋转时,由于受地球自转影响,其轴向子午面两侧往复摆动。通过观测,可定出真北方向。陀螺经纬仪主要用于矿山和隧道地下导线测量的定向工作。有的陀螺经纬仪用微处理机进行控制,自动显示测量成果,具有较高的测量精度。激光陀螺经纬仪则具有精度较高、稳定和成本低的特点。激光测量仪器装有激光发射器的各种测量仪器。这类仪器较多,其共同点是将一个氦氖激光器与望远镜连接,把激光束导入望远镜筒,并使其与视准轴重合。利用激光束方向性好、发射角小、亮度高、红色可见等优点,形成一条鲜明的准直线,做为定向定位的依据。在大型建筑施工,沟渠、隧道开挖,大型机器安装,以及变形观测等工程测量中应用甚广。常见的激光测量仪器有:①激光准直仪和激光指向仪。两者构造相近,用于沟渠、隧道或管道施工、大型机械安装、建筑物变形观测。目前激光准直精度已达10-5~10-6.②激光垂线仪。将激光束置于铅直方向以进行竖向准直的仪器。用于高层建筑、烟囱、电梯等施工过程中的垂直定位及以后的倾斜观测,精度可达0.5×10-4.③激光经纬仪。用于施工及设备安装中的定线、定位和测设已知角度。通常在200米内的偏差小于1厘米。④激光水准仪。除具有普通水准仪的功能外,尚可做准直导向之用。如在水准尺上装自动跟踪光电接收靶,即可进行激光水准测量。⑤激光平面仪。一种建筑施工用的多功能激光测量仪器,其铅直光束通过五棱镜转为水平光束;微电机带动五棱镜旋转,水平光束扫描,给出激光水平面,可达20”的精度。适用于提升施工的滑模平台、网形屋架的水平控制和大面积混凝土楼板支模、灌筑及抄平工作,精确方便、省力省工。液体静力水准仪利用连通管测定两点间微小高差的仪器。主要是由测深仪和控制器组成的观测系统。前者用微型电机作为动力,以测针自动跟踪水位进行观测,后者由电子设备部件经过测深仪与沉降点有线连接后,指挥任一沉降点进行工作,并由数码管显示逐点的观测值。在良好条件下,观测精度可达0.05mm左右。仪器主要用于精密测定建筑物沉降,建筑物安装及地震预报中的倾斜观测。摄影经纬仪由摄影机和经纬仪组装而成的供地面摄影测量野外作业用的主要仪器。摄影机上有物镜、暗箱、承片框、检影器。在承片框上装有精密的框标。经纬仪用来测定摄影站点和检查点的坐标,并确定主光轴方向。主要用于地形和非地形摄影测量。立体坐标量测仪摄影测量中用于测定立体像对上同名点的像片平面直角坐标和坐标差(视差)的仪器。由观测系统,导轨系统,像片盘,量测系统和照明设备等部分组成。有的仪器有自动坐标记录装置,还可直接获得计算机使用的穿孔纸带,或配有自动拍摄所量测像点影像的装置。主要用于解析空中三角测量和地面立体摄影测量加密像控点。立体测图仪航空摄影测量全能法测图仪器的统称。是摄影测量内业成图的主要仪器。其结构原理是以摄影过程的几何反转为基础。由投影系统、量测系统、观察系统和绘图系统组成。仪器按投影方式分为光学投影、机械投影和光学机械投影三种,按使用范围分,有专为地面立体摄影经纬仪配套的仪器,也有既可供航测成图又可供地面摄影成图的全能仪器;有的限于测图,有的还能用于空中三角测量。目前,发展的趋势是主机结构趋于简单,但增加各种外围设备,如自动坐标记录装置,正射投影装置、数控绘图桌等,以扩大使用范围,提高工作效率。另外,解析测图仪也可归于全能法测图仪器,它由带有反馈系统的高精度立体坐标量测仪、电子计算机、数控绘图桌、控制台及相应的软件组成。新型解析测图仪可以联机或脱机测图,其人机对话的数字摄影测量、信息库、图解系统用于地籍测量和空中三角测量,可获取数字地面模型、断面图、进行地面摄影测量以及修测更新地图等。正射投影仪将具有倾斜和地面起伏的中心投影像片变换成正射影像图的摄影测量专用仪器。正射影像图具有成图快速、信息丰富、直观易识等特点,正射投影仪一般分光学投影和电子投影两类,可以联机或脱机作业,制作正射影像图。更多关于标书代写制作,提升中标率,点击底部客服免费咨询。
陀螺仪原理:高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于垂直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止时可加以应用。
免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在及时联系我们,我们将在核实后第一时间删除内容!