投稿用户
更新时间:2025-11-09
385
弛豫铁电体和反铁电体陶瓷因能同时获得高饱和极化强度和近零剩余极化强度而具有实现优异储能性能的潜力。尽管反铁电陶瓷电容器的能量密度值近年来不断有新突破,自发极化强度,自发极化强度,但是其相应的储能效率仍不理想。相对于反铁电陶瓷而言,弛豫铁电体容易获得高的储能效率,然而相对较高的介电常数往往伴随其较低的介电击穿强度。因此,目前文献报道的弛豫铁电陶瓷的储能密度值普遍较低。

自发极化强度(自发极化强度很大)
合肥工业大学左如忠教授课题组针对这一问题,进行了深入而细致的研究,利用巧妙的组成设计,自发极化强度,突破了高性能介质陶瓷中储能密度和效率相互制约的瓶颈。该课题组近期在前期大量工作的基础上开展了针对性的研究,成功设计和合成了BiFeO3-BaTiO3-NaNbO3三元系无铅钙钛矿铁电固溶体陶瓷。一方面因禁带宽度的增大、晶粒细化以及电阻率的提高,体系的介电击穿强度显著提高;另一方面,伴随组成调控介电弛豫程度明显增强,电畴结构逐渐由宏畴演变为纳米电畴。利用压电力显微镜和高分辨透射电子显微镜观测到局域结构不均匀的纳米微区结构,形成了对电场几乎无滞后的极化响应和对温度不敏感的高介电响应,为同时获得高储能密度、高储能效率和优异的温度稳定性提供了坚实的结构基础,并最终制备出性能优异的储能电容器,具有超高的放电储能密度~8.12J/cm3、高储能效率~90%、优异的温度稳定性((±10%,-50~250oC)以及超快放电速率(t0.9
铁电材料?含铁的材料?还带电?不不不,可不能这么理解。铁电材料是指具有铁电效应的一类材料。那么问题来了,铁电效应是用铁来产生电吗?当然不是。时光追溯到1920年,法国人瓦拉赛克在美国明尼苏达大学的实验室中辛勤探索,想要开发一种地震仪来测量地震中的震动,他想知道是否可以通过压电晶体来实现这一点。这种晶体具有独特的性质,在受到挤压时会产生电信号。他手边有的压电材料是一种单晶物质,这种物质提取自葡萄酒,被称为“罗息盐”。当瓦拉赛克把这种材料的样品放在电场中时,他注意到出现了不寻常的现象:材料的电极化强度(内建电场)并不随着电场的撤销而消失,而是在电场为零时仍然保持着很大的电极化强度,而普通材料的电极化强度则会随着电场的撤销而消失,这就是铁电现象(图1)。这一现象与磁性材料(铁磁体)的磁极化性质随着磁场强度的变化一致,唯一的不同之处在于,铁磁体的磁极化性质演变是相对于磁场而言,而铁电体的电极化性质演变是相对于电场的变化。于是,研究人员把这类材料命名为“铁电材料”。
随着温度下降,晶体的对称性下降。当温度下降到130℃时,钛酸钡发生顺电-铁电相变。在130~5℃的温区内,钛酸钡为四方晶系4mm点群,具有显著地铁电性,其自发极化强度沿c轴方向,即[001]方向。钛酸钡从立方晶系转变为四方晶系时,结构变化较小。从晶胞来看,只是晶胞沿原立方晶系的一轴(c轴)拉长,而沿另两轴缩短。
当温度下降到5℃以下,在5~-90℃温区内,钛酸钡晶体转变成正交晶系mm2点群,此时晶体仍具有铁电性,其自发极化强度沿原立方晶胞的面对角线[011]方向。为了方便起见,通常采用单斜晶系的参数来描述正交晶系的单胞。这样处理的好处是使我们很容易地从单胞中看出自发极化的情况。钛酸钡从四方晶系转变为正交晶系,其结构变化也不大。从晶胞来看,相当于原立方晶系的一根面对角线伸长了,另一根面对角线缩短了,c轴不变。当温度继续下降到-90℃以下时,晶体由正交晶系转变为三斜晶系3m点群,此时晶体仍具有铁电性,其自发极化强度方向与原立方晶胞的体对角线[111]方向平行。钛酸钡从正交晶系转变成三斜晶系,其结构变化也不大。从晶胞来看,相当于原立方晶胞的一根体对角线伸长了,自发极化强度,另一根体对角线缩短了。
免责声明:
本站部份内容系网友自发上传与转载,不代表本网赞同其观点;
如涉及内容、版权等问题,请在及时联系我们,我们将在核实后第一时间删除内容!